397 research outputs found

    Instrumental Resolution of the Chopper Spectrometer 4SEASONS Evaluated by Monte Carlo Simulation

    Full text link
    We performed simulations of the resolution function of the 4SEASONS spectrometer at J-PARC by using the Monte Carlo simulation package McStas. The simulations showed reasonably good agreement with analytical calculations of energy and momentum resolutions by using a simplified description. We implemented new functionalities in Utsusemi, the standard data analysis tool used in 4SEASONS, to enable visualization of the simulated resolution function and predict its shape for specific experimental configurations.Comment: 8 pages, 5 figure

    Spatially Inhomogeneous Superconducting State near Hc2H_{\rm c2} in UPd2_2Al3_3

    Get PDF
    We have performed 27^{27}Al-NMR measurements on single-crystalline UPd2_2Al3_3 with the field parallel to the cc axis to investigate the superconducting (SC) properties near the upper critical field of superconductivity Hc2H_{\rm c2}. The broadening of the NMR linewidth below 14~K indicates the appearance of the internal field at the Al site, which originates from the antiferromagnetically ordered moments of U 5ff electrons. In the SC state well below μ0Hc2\mu_0H_{\rm c2} = 3.4~T, the broadening of the NMR linewidth due to the SC diamagnetism and a decrease in the Knight shift are observed, which are well-understood by the framework of spin-singlet superconductivity. In contrast, the Knight shift does not change below Tc(H)T_{\rm c}(H), and the NMR spectrum is broadened symmetrically in the SC state in the field range of 3~T <μ0H<μ0Hc2< \mu_0 H < \mu_0 H_{\rm c2}. The unusual NMR spectrum near Hc2H_{\rm c2} suggests that a spatially inhomogeneous SC state such as the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state would be realized.Comment: 5 pages, 5 figure

    UPPER ATMOSPHERE PHYSICS DATA, SYOWA STATION, 1982

    Get PDF

    Data-Importance-Aware Bandwidth-Allocation Scheme for Point-Cloud Transmission in Multiple LIDAR Sensors

    Get PDF
    This paper addresses bandwidth allocation to multiple light detection and ranging (LIDAR) sensors for smart monitoring, which a limited communication capacity is available to transmit a large volume of point-cloud data from the sensors to an edge server in real time. To deal with the limited capacity of the communication channel, we propose a bandwidth-allocation scheme that assigns multiple point-cloud compression formats to each LIDAR sensor in accordance with the spatial importance of the point-cloud data transmitted by the sensor. Spatial importance is determined by estimating how objects, such as cars, trucks, bikes, and pedestrians, are likely to exist since regions where objects are more likely to exist are more useful for smart monitoring. A numerical study using a real point-cloud dataset obtained at an intersection indicates that the proposed scheme is superior to the benchmarks in terms of the distributions of data volumes among LIDAR sensors and quality of point-cloud data received by the edge server

    Virtual Network Function Placement for Service Chaining by Relaxing Visit Order and Non-Loop Constraints

    Get PDF
    Network Function Virtualization (NFV) is a paradigm that virtualizes traditional network functions and instantiates Virtual Network Functions (VNFs) as software instances separate from hardware appliances. Service Chaining (SC), seen as one of the major NFV use cases, provides customized services to users by concatenating VNFs. A VNF placement model for SC that relaxes the visit order constraints of requested VNFs has been considered. Relaxing the VNF visit order constraints reduces the number of VNFs which need to be placed in the network. However, since the model does not permit any loop within an SC path, the efficiency of utilization of computation resources deteriorates in some topologies. This paper proposes a VNF placement model for SC which minimizes the cost for placing VNFs and utilizing link capacity while allowing both relaxation of VNF visit order constraints and configuration of SC paths including loops. The proposed model determines routes of requested SC paths, which can have loops, by introducing a logical layered network generated from an original physical network. This model is formulated as an Integer Linear Programming (ILP) problem. A heuristic algorithm is introduced for the case that the ILP problem is not tractable. Simulation results show that the proposed model provides SC paths with smaller cost compared to the conventional model

    Virtual network function placement and routing for multicast service chaining using merged paths

    Get PDF
    This paper proposes a virtual network function placement and routing model for multicast service chaining based on merging multiple service paths (MSC-M). The multicast service chaining (MSC) is used for providing a network-virtualization based multicast service. The MSC sets up a multicast path, which connects a source node and multiple destination nodes. Virtual network functions (VNFs) are placed on the path so that users on the destination nodes receive their desired services. The conventional MSC model configures multicast paths for services, each of which has the same source data and the same set of VNFs in a predefined order. In the MSC-M model, if paths of different services carry the same data on the same link, these paths are allowed to be merged into one path at that link, which improves the utilization of network resources. The MSC-M model determines the placement of VNFs and the route of paths so that the total cost associated with VNF placement and link usage is minimized. The MSC-M model is formulated as an integer linear programming (ILP) Problem. We prove that the decision version of VNF placement and routing problem based on the MSC-M model is NP-complete. A heuristic algorithm is introduced for the case that the ILP problem is intractable. Numerical results show that the MSC-M model reduces the total cost required to accommodate service chaining requests compared to the conventional MSC model. We discuss directions for extending the MSC-M model to an optical domain
    corecore